References
<A NAME="RG09703ST-1A">1a</A>
Ezaki M.
Iwami M.
Yamashita M.
Hashimoto S.
Komori T.
Umehara K.
Mine Y.
Kohsaka M.
Aoiki H.
Imanaka H.
J. Antibiot.
1985,
38:
1453
<A NAME="RG09703ST-1B">1b</A>
Uchida I.
Shigematsu N.
Ezaki M.
Hashimoto M.
J. Antibiot.
1985,
38:
1462
<A NAME="RG09703ST-1C">1c</A>
Uchida I.
Ezaki M.
Shigematsu N.
Hashimoto M.
J. Org. Chem.
1985,
50:
1341
<A NAME="RG09703ST-1D">1d</A>
Kannan R.
Williams DH.
J. Org. Chem.
1987,
52:
5435
<A NAME="RG09703ST-1E">1e</A>
Hempel JC.
Brown FK.
J.
Am. Chem. Soc.
1989,
111:
7323
<A NAME="RG09703ST-1F">1f</A>
Brown FK.
Hempel JC.
Dixon JS.
Amato S.
Mueller L.
Jeffs PW.
J.
Am. Chem. Soc.
1989,
111:
7328
<A NAME="RG09703ST-2A">2a</A>
Pruess DL.
Kellett M.
J.
Antibiot.
1983,
36:
208
<A NAME="RG09703ST-2B">2b</A>
Evans RH.
Ax H.
Jacoby A.
Williams TH.
Jenkis E.
Scannell JP.
J.
Antibiot.
1983,
36:
213
<A NAME="RG09703ST-2C">2c</A>
Müller J.-C.
Toome V.
Pruess DL.
Blount JF.
Weigele M.
J. Antibiot.
1983,
36:
217
<A NAME="RG09703ST-3A">3a</A>
Koiso Y.
Natori M.
Iwasaki S.
Sato S.
Sonoda R.
Fujita Y.
Yaegashi H.
Sato Z.
Tetrahedron Lett.
1992,
33:
4157
<A NAME="RG09703ST-3B">3b</A>
Koiso Y.
Morisaki N.
Yamashita Y.
Mitsui Y.
Shirai R.
Hashimoto Y.
Iwasaki S.
J.
Antibiot.
1998,
51:
418
<A NAME="RG09703ST-3C">3c</A>
Koiso Y.
Li Y.
Iwasaki S.
Hanaoka K.
Kobayashi T.
Sonoda R.
Fujita Y.
Yaegashi H.
Sato Z.
J. Antibiot.
1994,
47:
765
<A NAME="RG09703ST-3D">3d</A>
Morisaki N.
Mitsui Y.
Yamashita Y.
Koiso Y.
Shirai R.
Hashimoto Y.
Iwasaki S.
J. Antibiot.
1998,
51:
423
<A NAME="RG09703ST-4A">4a</A>
Talbot G.
Gaudry R.
Berlinguet L.
Can. J. Chem.
1956,
34:
911
<A NAME="RG09703ST-4B">4b</A>
Mizusaki K.
Makisumi S.
Bull. Chem. Soc. Jpn.
1981,
54:
470
<A NAME="RG09703ST-4C">4c</A>
Hausler J.
Liebigs
Ann. Chem.
1992,
1231
<A NAME="RG09703ST-4D">4d</A>
Jacob M.
Roumestant ML.
Viallefont P.
Martinez J.
Synlett
1997,
691
<A NAME="RG09703ST-5A">5a</A>
De Bernardo S.
Tengi JP.
Sasso GJ.
Weigele M.
J.
Org. Chem.
1985,
50:
3457
<A NAME="RG09703ST-5B">5b</A>
Girard A.
Greck C.
Genêt JP.
Tetrahedron
Lett.
1998,
39:
4259
<A NAME="RG09703ST-5C">5c</A>
Mues H.
Kazmaier U.
Synthesis
2001,
487
<A NAME="RG09703ST-6">6</A>
Schmidt U.
Meyer R.
Leitenberger V.
Stäbler F.
Lieberknecht A.
Synthesis
1991,
409
<A NAME="RG09703ST-7">7</A>
Jackson RFW.
Rettie AB.
Wood A.
Wythes MJ.
J. Chem.
Soc., Perkin Trans. 1
1994,
1719
<A NAME="RG09703ST-8">8</A>
Rudolph J.
Hannig F.
Theis H.
Wischnat R.
Org. Lett.
2001,
3:
3153
<A NAME="RG09703ST-9">9</A>
Hutton CA.
White JM.
Tetrahedron Lett.
1997,
38:
1643
<A NAME="RG09703ST-10">10</A>
Corey EJ.
Xu F.
Noe MC.
J.
Am. Chem. Soc.
1997,
119:
12414
<A NAME="RG09703ST-11">11</A>
Lygo B.
Wainwright PG.
Tetrahedron Lett.
1997,
38:
8595
<A NAME="RG09703ST-12A">12a</A>
Ooi T.
Kameda M.
Maruoka K.
J. Am. Chem. Soc.
1999,
121:
6519
<A NAME="RG09703ST-12B">12b</A>
Ooi T.
Takeuchi M.
Kameda M.
Maruoka K.
J. Am. Chem. Soc.
2000,
122:
5228
<A NAME="RG09703ST-12C">12c</A>
Kita T.
Georgieva A.
Hashimoto Y.
Nakata T.
Nagasawa K.
Angew.
Chem. Int. Ed.
2002,
41:
2832
<A NAME="RG09703ST-13">13</A>
O’Donnell MJ.
Aldrichimica Acta
2001,
34:
3
<A NAME="RG09703ST-14A">14a</A>
Lygo B.
Crosby J.
Peterson JA.
Tetrahedron Lett.
1999,
40:
1385
<A NAME="RG09703ST-14B">14b</A>
Lygo B.
Tetrahedron
Lett.
1999,
40:
1389
<A NAME="RG09703ST-15">15</A>
Boisnard S.
Carbonnelle A.-C.
Zhu J.
Org.
Lett.
2001,
3:
2061
<A NAME="RG09703ST-16">16</A>
Carbonnelle A.-C.
Zhu J.
Org. Lett.
2000,
2:
3477
<A NAME="RG09703ST-17">17</A> Substrate-directed transformation,
see:
Hoveyda AH.
Evans DA.
Fu GC.
Chem.
Rev.
1993,
93:
1307
Double asymmetric induction:
<A NAME="RG09703ST-18A">18a</A>
Horeau A.
Kagan HB.
Vigneron JP.
Bull. Soc. Chim. Fr.
1968,
3795
<A NAME="RG09703ST-18B">18b</A>
Masamune S.
Choy W.
Petersen JS.
Sita LR.
Angew. Chem., Int. Ed.
Engl.
1985,
24:
1
<A NAME="RG09703ST-19">19</A>
We thank one of the reviews for pointing
out this control experiment. This result was not unexpected, but
it didn’t allow us to conclude whether the observed stereoselectivity in
the presence of chiral ammonium salt was intrinsic to our substrate
or was the consequence of the lack of the catalyst assistance.
<A NAME="RG09703ST-20">20</A>
Estiarte MA.
Diez A.
Rubiralta M.
Jackson RFW.
Tetrahedron
2001,
57:
157
<A NAME="RG09703ST-21">21</A>
Compound 17.
Rf = 0.5 (eluent: ethyl acetate/heptane = 1/4); IR
(CHCl3) 3444, 3024, 2982, 1712, 1507 cm-1; 1H
NMR (300 MHz, CDCl3, 293 K) δ 1.44 (s, 9 H)
Hz, 1.46 (s, 9 H), 1.65-1.82 (m, 1 H), 1.93-1.98
(m, 1 H), 3.08-3.17 (ddd, 1 H, J
1 = 13.3
Hz, J
2 = 7.8 Hz, J
3 = 6 Hz), 3.36-3.42
(m, 1 H), 3.91 (m, 1 H), 4.22 (m, 1 H), 5.10 (s, 2 H), 5.26 (m,1
H), 5,39 (m, 1 H), 7,35 (m, 5 H); 13C
NMR (75 MHz, CDCl3) δ 28.0, 28.3, 38.0, 46.8,
52.1, 66.9, 69.1, 82.3, 82.5, 128.1, 128.2, 128.5, 136.4, 156, 157.1,
171.6; MS (ESI) m/z 461 (M + Na); [α]D = +9.3
(c 0.9 CHCl3). Compound 18. Rf = 0.41 (eluant: ethyl
acetate/heptane = 1/1); IR (CHCl3)
3445, 1783, 1717 cm-1; 1H
NMR (300 MHz, CDCl3, 293 K) δ 1.45 (s, 1 H), 2.32
(m, 1 H), 2.46-2.53 (m, 1 H), 3.30 (dt, 1 H, J
1
= 15
Hz, J
2 = 6.3 Hz),
3.52-3.56 (m, 1 H), 4.23 (br d, 1 H, J = 6.8
Hz), 4.75 (br s, 1 H), 5.12-5.18 (m, 4 H), 7.36 (m, 5 H); 13C
NMR (75 MHz, CDCl3) δ 28.2, 31.4, 44.6, 49.5,
67.1, 77.2, 80.7, 128.1, 128.2, 128.6, 136.2, 155.3, 156.7, 175.1;
MS (EI)
m/z 387 (M + Na),
403 (M + K); [α]D = -18.1
(c 0.57 CHCl3); [α]D = -22.4
(c 0.5 CHCl3).
[20]
Double stereoselection using matched
and mismatched chiral ammonium catalyst in the alkylation of a Gly-l-Phe derivative has been documented very
recently, see:
<A NAME="RG09703ST-22A">22a</A>
Ooi T.
Tayama E.
Maruoka K.
Angew.
Chem. Int. Ed.
2003,
42:
579
<A NAME="RG09703ST-22B">22b</A> For an earlier example
of an achiral quarternary ammonium salt catalyzed alkylation of
a dipeptide, see:
O’Donnell MJ.
Zhou C.
Scott WL.
J.
Am. Chem. Soc.
1996,
118:
6070
<A NAME="RG09703ST-23A">23a</A>
Morikawa K.
Sharpless KB.
Tetrahedron
Lett.
1993,
34:
5575
<A NAME="RG09703ST-23B">23b</A>
Guzman-Perez A.
Corey EJ.
Tetrahedron Lett.
1997,
34:
5941